Не нашли нужный чертёж? Тогда просто закажите его у нас!
Автомобильный транспорт различного типа и назначения стал неотъемлемой частью жизнедеятельности общества промышленно развитых стран всего мира. Он интенсивно и в массовом количестве используется в промышленности, при грузоперевозках и перевозках людей, в различных сферах производства и экономики, а также и в интересах обеспечения обороноспособности государства.
139 0

Автомобильные двигатели: рабочие циклы, показатели и характеристики. Методы повышения эффективности энергопреобразования - диплом по транспорту, грузоперевозкам

550.00 RUB

715.00 RUB

Автомобильный транспорт различного типа и назначения стал неотъемлемой частью жизнедеятельности общества промышленно развитых стран всего мира. Он интенсивно и в массовом количестве используется в промышленности, при грузоперевозках и перевозках людей, в различных сферах производства и экономики, а также и в интересах обеспечения обороноспособности государства.

Если у вас есть промокод, то воспользуйтесь им.
На указанный E-mail будет отправлен архив с работой.

Работа будет доступна для скачивания после оплаты. Произвести оплату можно картами VISA и MasterCard.

Характерными чертами современных автомобилей, ответственных агрегатов и систем, таких как их двигатели, становятся сложность, тепловая и механическая нагруженность, насыщенность глубокими и пересекающимися обратными связями. От конструкции двигателей, вида используемых в них рабочих процессов во многом зависят такие важные показатели как их мощность, топливная экономичность, экологическая безопасность, вероятность безотказной работы, ресурс.

Двигатель внутреннего сгорания (ДВС) автомобиля является тепловой машиной, в которой теплота, как форма аккумулирования и передачи кинетической энергии структурных частиц вещества, получаемая в процессе экзотермической реакции окисления топлива, происходящей в рабочем теле с его участием в качестве окислителя в результате сгорания, преобразуется в работу, способную приводить в движение мобильные технические средства.

В современных условиях в автомобильной промышленности все большее внимание уделяется разработке систем, улучшающих мощностные, топливо-экономические и экологические характеристики двигателя внутреннего сгорания. Главным образом, разработки идут по пути повышения мощности и приемистости работы двигателей в различных режимах эксплуатации техники, снижения удельных затрат топлива, а также в целях уменьшения токсичности отработавших газов двигателей автомобильной техники, в том числе за счет совершенствования характеристик протекания рабочих процессов в цилиндрах двигателя.

В двигателях с принудительным воспламенением особое внимание уделяется методам повышения эффективности энергопреобразования.

Основными направлениями совершенствования являются:

уменьшение термодинамических потерь за счет повышения степени сжатия;

совершенствование характеристик тепловыделения путем повышения полноты, скорости и оптимального фазового положения процесса сгорания;

уменьшение механических потерь;

повышение эффективности энергопреобразования во всем поле реальных эксплуатационных режимов путем оптимального управления двигателем.

Реализация этих общих направлений осуществляется за счет определенных физических условий, к которым относятся:

оптимизация состава горючей смеси на всех режимах работы двигателя;

турбулизация заряда;

улучшение воздухоснабжения;

оптимизация временных и энергетических характеристик зажигания.

Среди ДВС с принудительным воспламенением, применяемых в автомобильном транспорте, во всем мире в последние 20-30 лет резко возрос удельный вес систем впрыскивания в связи с введением жестких стандартов на выброс вредных веществ с отработавшими газами. Так, например, если в странах Западной Европы и Японии в 1989 году число моделей двигателей с впрыскивающей аппаратурой (инжекторных двигателей) составляло до 30% от всей номенклатуры выпускаемых образцов, то к 1993 году оно резко увеличилось до 96% [ 1 ].

Впрыскивание топлива позволило исключить недостатки, присущие карбюраторной системе топливоподачи: высокие гидравлические сопротивления на впуске, сложность точного дозирования компонентов горючей смести, практическую невозможность равномерного распределения топлива по отдельным цилиндрам многоцилиндрового двигателя.

При этом в наибольшей степени возможности и эффективность систем впрыскивания возросли с применением электронного управления топливоподачи с использованием микропроцессоров.

Оптимальное управление двигателем в любой точке поля эксплуатационных режимов может строиться с использованием двух принципов:

управление комплексом регулировочных параметров на основе заложенных в систему программ;

самонастраивающееся или адаптивное управление.

Основной задачей данной дипломной работы является разработка модели процесса тепловыделения в цикле сгорания в черетырехтактном двигателе с непосредственным смесеобразованием.

Актуальность темы. На сегодняшний день разработан ряд методов оценки тепловыделения в процессе сгорания топлива в цилиндрах ДВС и управления двигателями с принудительным воспламенением. Однако вопрос оперативной обработки информации о качественном или частичном регулировании, который предусматривает изменение мощности только за счет использования специальных способов воспламенения и сжигания бедных смесей и происходящем при этом характере тепловыделения в цилиндрах двигателя не решен до сих пор в полной мере. Кроме того, необходимо средство для оценки методов диагностирования с точки зрения их эффективности без проведения большого объема натурных испытаний двигателя.

Таким средством, как представляется является математическое моделирование. К тому же, с помощью математического моделирования возможно исследование не только термодинамических процессов, проходящих при сгорании топливо-воздушной смеси, но и в последствии осуществлять анализ сигналов специальных диагностических датчиков, входящих в систему оптимального управления двигателем.

Целью дипломной работы является разработка математической модели процесса тепловыделения в цикле сгорания топлива и оптимизации топливоподачи в инжекторных ДВС.

Достижение поставленной цели предполагает решение ряда задач:

изучить характер и особенности процесса сгорания в инжекторных ДВС и тепловыделения;

выявить основные закономерности указанных процессов;

разработать алгоритм процесса тепловыделения в цикле сгорания в четырехтактном ДВС с непосредственным впрыском топлива;

по результатам моделирования оценить полученные данные.

Объектом исследования является процесс сгорания в ДВС с принудительным воспламенением

Предметом исследования являются основные параметры термодинамического процесса сгорания топливо-воздушной смеси в инжекторном двигателе.

Основные методы исследования - системный метод, численные методы и методы математического моделирования.

При разработке математической модели использовались основные законы и уравнения термодинамики, тепломассообмена, газовой динамики, химической кинетики, эмпирические зависимости.

Математическая модель реализована в виде компьютерной программы на языке VBA.

Объем работы:

Диплом состоит из введения, трех глав, выводов, списка литературы и трех приложений. Общий объем работы 71 страница, в том числе 9 рисунков. Библиография содержит 21 источник.


В современных ДВС впрыскивание может осуществляться либо непосредственно в цилиндр двигателя, либо во впускной трубопровод.

При применении непосредственного впрыскивания легкого топлива, осуществляемого в процессе сжатия, удается обеспечить высокую равномерность распределения топлива по цилиндрам, максимально повысить коэффициент наполнения. Последнее происходит как за счет отсутствия диффузора, увеличенного сечения впускного трубопровода и его настройки, обеспечивающей инерционный наддув, так и вследствие организации наполнения «чистым» воздухом, не содержащим паров топлива. Непосредственное впрыскивание позволяет также использовать охлаждающий эффект от испарения топлива в цилиндре, что дает возможность повысить степень сжатия и благоприятно влияет на снижение образования токсических оксидов азота. Однако системы непосредственного впрыскивания могут работать только при достаточно высоких давлениях впрыскивания (5...12 МПа), что требует применения дорогостоящей прецизионной топливной аппаратуры.

В этой связи предпочтительнее использовать центральную систему впрыскивания бензина во впускной трубопровод. В этом случае требуемое давление впрыскивания снижается до 0,2...0,4 МПа и является легко реализуемым.

Системы впрыскивания во впускной трубопровод (рис. 1.1.2) имеют минимальное гидравлическое сопротивление впускного тракта, а за счет подбора длин впускного трубопровода могут осуществлять инерционный наддув, что существенно повышает коэффициент наполнения.

Впрыскивание бензина во впускной трубопровод может осуществляться циклически в виде отдельных порций или непрерывно. При этом циклическое впрыскивание в распределенных системах реализуется либо синхронно с определенными тактами рабочего цикла каждого цилиндра (фазированное впрыскивание), либо в виде группового впрыскивания парой или одновременно всеми форсунками.

Впрыскивание топлива в воздушный заряд двигателей под избыточным давлением как альтернатива образования горючей топливовоздушной смеси за счет использования «подсасывающего» действия потока воздуха возникло и развивалось в самом начале появления поршневых двигателей с искровым зажиганием (еще в конце XIX века).

Вместе с тем, первый серийный двигатель с непосредственным впрыскиванием бензина был применен на автомобиле Mersedes-Benz 300SL только в 1954 году, показавшем большие преимущества этого способа смесеобразования с точки зрения резкого улучшения динамики машины. Однако сложность и высокая стоимость аппаратуры непосредственного впрыскивания существенно тормозили их массовое применение. И только, начиная с 1961 года, когда сочли возможным перейти на впрыскивание бензина во впускной трубопровод, что существенно упростило топливную аппаратуру, применение таких систем стало стремительно расширяться. Дополнительным импульсом к этому послужил переход на электронное управление топливоподачей, что заметно улучшило функциональные характеристики двигателей.

Практически все последние модели бензиновых двигателей для новых автомобилей всех классов в подавляющем большинстве случаев оборудуются системами впрыскивания. При этом аппаратура для этих систем производится специализированными фирмами, в числе которых следует назвать немецкую фирму BoschGeneral Motors (США), Lucas (Великобритания) и Hitaschi (Япония). О массовости применения систем впрыскивания бензина свидетельствует и тот факт, что в 1993 году одной только фирмой Bosch было выпущено более 11 миллионов комплектов этой аппаратуры.

Резкое увеличение применяемости систем впрыскивания топлива в двигателях с искровым зажиганием вызвано значительно большими возможностями удовлетворения возросшим требованиям в отношении экологических свойств и топливной экономичности автомобилей. При этом в наибольшей степени возможности и эффективность системы впрыскивания возросли с применением электронного управления топливоподачей.

Впрыскивание топлива позволило исключить недостатки, органически присущие карбюраторной системе топливопитания: высокие гидравлические сопротивления на впуске, сложность достижения необходимой точности дозирования компонентов горючей смеси, практическую невозможность равномерного распределения топлива по отдельным цилиндрам многоцилиндрового двигателя.

Отмеченные недостатки в значительной мере устраняют при применении взамен карбюрации смесеобразования, осуществляемого путем впрыскивания легкого топлива. Общая классификация систем впрыскивания приведена на рис. 1.1.1. 

В современных ДВС впрыскивание может осуществляться либо непосредственно в цилиндр двигателя, либо во впускной трубопровод.

При применении непосредственного впрыскивания легкого топлива, осуществляемого в процессе сжатия, удается обеспечить высокую равномерность распределения топлива по цилиндрам, максимально повысить коэффициент наполнения. Последнее происходит как за счет отсутствия диффузора, увеличенного сечения впускного трубопровода и его настройки, обеспечивающей инерционный наддув, так и вследствие организации наполнения «чистым» воздухом, не содержащим паров топлива. Непосредственное впрыскивание позволяет также использовать охлаждающий эффект от испарения топлива в цилиндре, что дает возможность повысить степень сжатия и благоприятно влияет на снижение образования токсических оксидов азота. Однако системы непосредственного впрыскивания могут работать только при достаточно высоких давлениях впрыскивания (5...12 МПа), что требует применения дорогостоящей прецизионной топливной аппаратуры.

В этой связи предпочтительнее использовать центральную систему впрыскивания бензина во впускной трубопровод. В этом случае требуемое давление впрыскивания снижается до 0,2...0,4 МПа и является легко реализуемым.

Системы впрыскивания во впускной трубопровод (рис. 1.1.2) имеют минимальное гидравлическое сопротивление впускного тракта, а за счет подбора длин впускного трубопровода могут осуществлять инерционный наддув, что существенно повышает коэффициент наполнения.

Впрыскивание бензина во впускной трубопровод может осуществляться циклически в виде отдельных порций или непрерывно. При этом циклическое впрыскивание в распределенных системах реализуется либо синхронно с определенными тактами рабочего цикла каждого цилиндра (фазированное впрыскивание), либо в виде группового впрыскивания парой или одновременно всеми форсунками.

work3.rtf
4.834 Мб

Транспорт


Для работы транспортных средств необходима качественная и свое-временная диагностика и ремонт. Ремонтные работы подразделяются на текущий – выполняется при факте поломки, а так же капитальный – плановый ремонт при большой пробеге или износе.
0 0
600.00 RUB
780.00 RUB
Восстановление картера делителя передач автомобиля КАМА...
Восстановление деталей – комплекс операций по устранению основных дефектов, обеспечивающих возобновление работоспособности и параметров, установленных в нормативно-технической документации. Многолетний опыт восстановления деталей доказал свою эффективность. Себестоимость восстановления деталей составляет 30-50% стоимости новых деталей.
0 0
600.00 RUB
780.00 RUB
Разработка технологического процесса восстановления кар...
Сборочный чертеж формата А1 со спецификацией на листе чертежа и описанием работы
0 0
500.00 RUB
650.00 RUB
Приспосоление для замера давления в цилиндрах подвески...
Технологический расчет автотранспортного предприятия на 110 автомобилей КамАЗ-65115 с чережами АТП формата А1 и агрегатного участка формата А1
40 0
800.00 RUB
1040.00 RUB
Технологический расчет автотранспортного предприятия на...
Разборка главной передачи
Общая трудоекость - 40,8 чел.-мин (0,68 чел.-ч).
Исполнитель - слесарь по ремонту автомобилей 3 разр
250 0
700.00 RUB
910.00 RUB
Технологическая карта разборки главной передачи
Техническии характеристики
1.	Стенд стационарный ручной с червячным приводом
2.	Масса редуктора не более 200 кг.
3.	Усилие на рукоятке не более 150 Н
111 0
720.00 RUB
936.00 RUB
Стенд для разборки и сборки редукторов